Цветовые системы. Основные цветовые системы

Аддитивный цвет получается при соединении света разных цветов. В этой схеме отсутствие всех цветов представляет собой чёрный цвет, а присутствие всех цветов - белый. Схема аддитивных цветов работает с излучаемым светом, например, монитор компьютера. В схеме субтрактивных цветов происходит обратный процесс. Здесь получается какой-либо цвет при вычитании других цветов из общего луча света. В этой схеме белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие даёт чёрный цвет. Схема субтрактивных цветов работает с отражённым светом.

Система цветов RGB

Монитор компьютера создает цвет непосредственно излучением света и, использует схему цветов RGB. Если с близкого расстояния посмотреть на экран монитора, то можно заметить, что он состоит из мельчайших точек красного, зелёного и синего цветов. Компьютер может управлять количеством света, излучаемого через любую окрашенную точку и, комбинируя различные сочетания любых цветов, может создать любой цвет. Будучи определена природой компьютерных мониторов, схема RGB является самой популярной и распространённой, но у неё есть недостаток: компьютерные рисунки не всегда должны присутствовать только на мониторе, иногда их приходится распечатывать, тогда необходимо использовать другую систему цветов - CMYK.

Система цветов CMYK

Данная система была широко известна задолго до того, как компьютеры стали использоваться для создания графических изображений. Для разделения цветов изображения на цвета CMYK применяют компьютеры, а для полиграфии разработаны их специальные модели. Преобразование цветов из системы RGB в систему CMYK сталкивается с рядом проблем. Основная сложность заключается в том, что в разных системах цвета могут меняться. У этих систем различна сама природа получения цветов и то, что мы видим на экране мониторов никогда нельзя точно повторить при печати. В настоящее время существуют программы, которые позволяет работать непосредственно в цветах CMYK. Программы векторной графики уже надёжно обладают этой способностью, а программы растровой графики лишь в последнее время стали предоставлять пользователям средства работы с цветами CMYK и точного управления тем, как рисунок будет выглядеть при печати.

Системы цветов HSB и HSL

Системы цветов HSB и HSL базируется на ограничениях, накладываемых аппаратным обеспечением. В системе HSB описание цвета представляется в виде тона, насыщенности и яркости. В другой системе HSL задаётся тон, насыщенность и освещённость. Тон представляет собой конкретный оттенок цвета. Насыщенность цвета характеризует его относительную интенсивность или частоту. Яркость или освещённость показывают величину чёрного оттенка добавленного к цвету, что делает его более тёмным. Система HSB хорошо согласовывается с моделью восприятия цвета человеком, то есть он является эквивалентом длины волны света. Насыщенность - интенсивность волны, а яркость - общее количество света. Недостатком этой системы является то, что для работы на мониторах компьютера её необходимо преобразовать в систему RGB, а для четырехцветной печати в систему CMYK.

Индексированный цвет, работа с палитрой

Все описанные ранее системы цветов имели дело со всем спектром цветов. Индексированные палитры цветов - это наборы цветов, из которых можно выбрать необходимый цвет. Преимуществом ограниченных палитр является то, они что занимают гораздо меньше памяти, чем полные системы RGB и CMYK. Компьютер создаёт палитру цветов и присваивает каждому цвету номер от 1 до 256. Затем при сохранении цвета отдельного пиксела или объекта компьютер просто запоминает номер, который имел этот цвет в палитре. Для запоминания числа от 1 до 256 компьютеру необходимо всего 8 бит. Для сравнения полный цвет в системе RGB занимает 24 бита, а в системе CMYK - 32.

Чтобы понять из чего состоит цвет , необходимо сначала узнать о двух цветовых системах, с которыми вы столкнетесь, профессионально занимаясь фотошопом: аддитивной и субтрактивной.

Аддитивная цветовая система применяется в любом изображении, которое появляется на экране, она объясняет, как потоки света соединяются для получения цвета. Печатные изображения, напротив, создаются путем смешивания красок согласно субтрактивной цветовой системе .

Изображения, которые вы видите на мониторе компьютера (или телевизора) состоят из света. И хотя ваши глаза чувствительны к сотням волн разной длины (каждая из которых соотносится с определенным цветом), для воспроизведения всех цветов, что вы видите на экране, достаточно всего трех - красного, зеленого и синего (RGB) . Чистый холст экрана это тьма (другими словами, отсутствие света) и чтобы создать цвет, монитор добавляет отдельные пикселы цветного света. Вот почему экранная система цветов называется аддитивной . Каждый крошечный пиксел может быть только красным, зеленым или синим, или, чаще всего, некоторой комбинацией всех трех цветов. Все устройства захвата изображения - такие, как цифровые фотоаппараты, видеокамеры, сканеры - используют аддитивную систему цвета, как и все устройства отображения цифровых изображений.

В аддитивной цветовой системе области пересечения красного, зеленого и синего света выглядят белыми (см. рис.). Утверждение кажется вам глупым или же заставляет вспомнить школьный курс физики? Подумайте об этом так: если бы вы направили красный, зеленый и синий прожектора на сцену, то увидели бы белый свет там, где пересекутся лучи всех трех ламп. Любопытно, что в местах пересечения только двух из трех лучей света вы бы также увидели голубой, пурпурный или желтый цвета. Области, на которые не попадает свет, кажутся черными. Вот как компьютерные мониторы и телевизоры создают цвета на экране.

Вы можете самостоятельно провести подобный эксперимент со светом, создав красный, зеленый и синий круги на отдельных слоях на черном фоне. Сделайте круги пересекающимися, переключите режим наложения каждого слоя на - и там, где круги пересекаются, появятся другие цвета.

Теперь пришло время поговорить о печатном цвете , который работает совершенно по-другому.

Печатные машины используют так называемую субтрактивную систему цвета. В этой системе цвета возникают в результате сочетания отраженного света (который вы видите) и поглощенного (которые вы не видите).

На распечатанной фотографии в журнале данная система работает как своего рода совместное предприятие используемых печатных красок (голубой, пурпурной, желтой и черной, все из которых поглощают цвет) и бумаги, на которую эти краски нанесены (отражающей поверхности). Печатные краски служат фильтром, поглощая часть света, попадающего на бумагу. Бумага, в свою очередь, отражает свет обратно; чем белее бумага, тем точнее будут смотреться цвета, когда их распечатают.

В субтрактивной системе краски разных цветов поглощают различные цвета светового спектра. Например, голубые краски поглощают красный свет и отражают зеленый и синий так, что вы видите сочетание зеленого и синего, другими словами, голубой. Аналогичным образом пурпурные краски поглощают зеленый свет и отражают красный и синий, иными словами, пурпурный. И последний пример: сочетание голубого, пурпурного и желтого красок поглощает большую часть основных цветов (красного, зеленого и синего) и отображает то, что осталось за кадром - темно-коричневый.

Примечание

Для получения истинного черного, градаций серого и оттенков цвета (смешанных с черным для создания более темных вариантов), сотрудники типографии решили добавить черный в качестве четвертого цвета красок для печати. Они не могли сокращенно обозначить его буквой В (black) во избежание путаницы с синим (как в RGB), поэтому вместо буквы В использовали К (blacK ). Вот как возникла аббревиатура CMYK .

Подводя итог: субтрактивный цвет создается при помощи света, падающего на объект и отражающегося вам в глаза, в то время как аддитивные цвета создаются с помощью разноцветных потоков света, пересекающихся между собой прежде, чем вы их увидите.

Заметили ошибку в тексте - выделите ее и нажмите Ctrl + Enter . Спасибо!

На практике люди не различают цвет как физическое явление и ощущение цвета. Чаще всего мы соединяем в одном выражении объективную причину и осо­бое качество вызванного этой причиной ощущения. Говорят: «желтый цвет», говорят, не отдавая себе отчета в том, что это словосочетание - гибрид. Свет - объективное явление. Его качества - это его спектр и его сила. Слово «желтый» обозначает качество ощущения. Белый дом, красный рефлекс - все это выражения-гибриды, хорошо передающие тесную связь объективного факта (причины) н его отражения нашим сознанием.

Качество ощущения связано со спектральным составом светового потока вовсе неоднозначно. «Желтой» может быть линия спектра (линия натрия 536 нм.). Такой же желтой может быть сумма «зеленого» и «красного» луча. И свет, содер­жащий полный спектр, может быть желтым (например, цвет солнечного диска). При известных условиях «ощущение» желтого цвета - «цветную тень» - может создать даже соседство зеленого и синего излучения. Я наблюдал двойную тень на снегу при двойном освещении ртутной лампой и луной. Свет ртутной лампы - белый, зеленоватый, луны - более теплый. Тень, освещенная только светом луны, была желтой (цвета желтой охры), светом лампы - синей (цвета пепельно-серого ультрамарина).

Попытки привести множество цветов в систему имеют дело не с физическими характеристиками светового потока, а с качествами ощущения.

Художника интересует прежде всего цветовая система как таковая, система, объединяющая качества видимого цвета, качества ощущения. Известны три основ­ных качества цвета: цветовой тон, светлота и насыщенность. Надо, чтобы худож­ники усвоили эту паучную терминологию и не путали тон с цветовым тоном, насыщенность с яркостью цвета, освещенность со светлотой.

Цветовым тоном называют качества цвета, обозначаемые такими словами, как желтое, красное, синее, оранжевое, зеленое, сине-зеленое, пурпурное и т. д. Понятно, что между оранжевым и желтым, оранжевым и красным можно найти промежуточные цвета, более близкие к одному или другому цвету. Можно соста­вить непрерывный замкнутый ряд изменений по цветовому тону от фиолетового через синие, зеленые, желтые, красные, пурпурные до исходного фиолетового. Все цвета, обладающие цветовым тоном, называются хроматическими в отличие от ахроматических (нейтральных) цветов - белого, серого и черного.

Нельзя указать однозначной физической основы для данного цветового тона. Между свойствами светового раздражителя и качеством ощущения связь осуще­ствляет цветовое зрение, суммирующее раздражители по своим законам.

Светлотой называют качество цвета, присущее одинаково и хроматическим и ахроматическим цветам. Ахроматические цвета различаются только по светлоте, образуя непрерывный ряд от «абсолютно» черного до слепящего белого 4 .



Физической основой светлоты цвета служит яркость прямого или отраженного излучения. Светлоту не следует путать с белизной. Из предметных цветов самый светлый - белый, но распределение освещенности может сделать предметный белый более темным, чем серый (серое на солнце и белое в тени). Желтое пятно лампы светлее белого снега под ней. Сильное увеличение светлоты уменьшает число различий по цветовому тону. Так же, как все очень темные цвета сливаются в конце концов в один черный, так и очень светлые - на границе слепящего света - в один белый.

Насыщенностью называют большую или меньшую выраженность в цвете его цветового тона. Ахроматические цвета можно назвать цветами нулевой насыщен­ности. К максимально насыщенным цветам относятся, в частности, спектральные цвета. Однако нельзя указать однозначной физической основы насыщенности цвета. И здесь вмешиваются законы цветового зрения.

Колориста всегда увлекала задача создания на картине светло-насыщенных и темно-насыщенных цветов, особенно сочетание светлоты и насыщенности 5 .

Первая попытка привести видимые цвета в систему принадлежала Исааку Ньютону. Цветовая система Ньютона - цветовой круг, составленный из семи секторов: красного, оранжевого, желтого, зеленого, голубого, синего и фиоле­тового 6 .

Нельзя не удивляться тому, как пришел Ньютон к идее цветового круга, объединяющей цвета в систему по признакам, присущим ощущению цвета, как создал он систему, воспринятую позднее с небольшими изменениями даже его крайним противником Гёте, систему, нужную художнику и удержавшуюся в основ­ном до наших дней.

Заметив, экспериментируя со стеклами, разложение солнечного луча призмой - факт непрерывного изменения цвета в спектре,- Ньютон формулировал удиви­тельную мысль о сложном составе простого солнечного луча. Если белый луч, проходя через призму, растягивается в ленту разных цветов от красного до фиолетового, все больше и больше отклоняясь от прямого пути, то белый луч - это сумма разноцветных излучений. Разные цветные лучи, обладая разным коэффициентом преломления, отклоняются от прямого пути на разную величину - меньше всего красные, больше всего фиолетовые.

Доказательства самого Ньютона не были безупречными, и Гёте придирчиво писал об этом. Для подтверждения разной преломляемости разных но цвету лучей Ньютон пользовался выкрасками. Мы знаем теперь, что свет, отраженный от выкраски, нельзя отождествлять со спектральным цветом. Цвет выкраски - сам сложен. Однако гениальная догадка оказалась верной. Казалось бы, Ньютон, как физик, интересующийся больше объективными величинами, чем ощущениями, должен был в качестве модели, объединяющей цвета, выбрать отрезок прямой, каждой точке которого отвечает свой коэффициент преломления. Так и поступают ученые, оставаясь на почве спектрального анализа.

Гениальность Ньютона, однако, сказалась и в том, что он не забыл другой стороны вопроса. Его удивление факту простоты цвета солнечного луча столь же удивительно, как и удивление фактур падения яблока.

Белый луч - это сумма излучений, значит, наше зрение суммирует цвета, порождая по определенным законам одни цвета из других. Физик стал на точку зрения физиолога 7 . И Ньютон испытал оптические суммы разных цветов. Вот что он получил. Смешение двух близких по спектру цветов дает цвет промежуточный между ними. Смешение красного и зеленого, оранжевого и синего, желтого и фиолетового дает цвет, близкий к белому.

Приемы смешения, которыми пользовался Ньютон, также не были безупреч­ными. Но все законы оптического смешения были фактически предсказаны им. Он заметил и тот факт, что смешение фиолетового и красного цвета дает пурпур­ные цвета, которых нет в спектре. Таким образом, множество цветов оказалось не только непрерывным, но и замкнутым. Увидел Ньютон и то, что смешение не близких по спектру цветов всегда ведет к потере насыщенности, к подмеси белого (серого). Идея цветового круга была столько же естественным, сколько и удивительным следствием экспериментов гениального физика по смешению цве­тов, так же как идея самого смешения - естественным и удивительным следствием наблюдений над разложением солнечного луча.

Хотя художники должны на практике хорошо знать и цветовой круг и законы оптического суммирования, мы считаем полезным напомнить здесь эту азбуку цветоведения 8 .

По окружности цветового круга расположены непрерывно изменяющиеся но цветовому тону насыщенные цвета - спектральные и пурпурные. Против пурпурно-красного расположен зеленый цвет, против красного - сине-зеленый, против оранжевого - синий и против желтого - фиолетовый. На каждом радиусе расположены цвета одного цветового тона, непрерывно изменяющиеся по насыщен­ности от спектрального или пурпурного до белого, расположенного в центре круга. Изменение цвета по светлоте в цветовом круге не учитывается.

На цветовом круге легко наглядно показать три закона оптического смешения цветов. Согласно идее Ньютона, цвет смеси находится (по принципу центра тяжести) на прямой, соединяющей смешиваемые цвета, ближе к тому цвету, кото­рого в смеси «больше».

Соединим хордой два близких спектральных цвета, например оранжевый и крас­ный. Их оптическая сумма расположена на хорде и будет, очевидно, обладать цветовым тоном цвета, промежуточного между смешиваемыми цветами. Эго правило оптического смешения, полученное Ньютоном. Легко заметить, что любое смешение цветов ведет к потере насыщенности. Чем дальше друг от друга смеши­ваемые спектральные цвета, тем больше потеря насыщенности в цвете смеси.

Наконец, наиболее удаленные друг от друга цвета, цвета диаметрально противоположные на цветовом круге, например желтый и фиолетовый, дают при смешении в «равных количествах» белый цвет. Такие цвета называют дополнительными. Итак, дополнительные цвета, смешанные в «равных количествах», взаимно нейтрализуются. Это второе правило оптического смешения. Наконец, сумму двух цветов можно смешать с третьим цветом. Эффект смешения как легко убедиться на цветовом, круге, не будет зависеть от того, как составлен каждый из смешиваемых цветов. При смешении каждый цвет как бы он ни был сложен, рассматривается как простой цвет - точка цветового круга. Это третье правило оптического смешения 9 .

Очевидно, можно выбрать три спектральных цвета, смешение которых в разных количествах может дать все или почти все цвета цветового круга. Такой цветовой триадой принято теперь считать триаду - красный, зеленый, синий. Красный, зеленый и синий называют основными цветами ньютоновской цветовой системы.

Последующие исследования лишь уточняли эту систему.

Новейшие экспериментальные данные о дополнительных цветах фиксируют следующие пары: синий (сходный с ультрамарином темным) и желтый (сходный с желтым кадмием); фиолетовый (сходный с фиолетовым кобальтом лилового оттенка) и зеленовато-желтый; пурпурный

(сходный с фиолетовым краплаком) и зеленый (сходный с травяной зеленью); голубой (сходный с берлинской лазурью) и оран­жевый; красный (сходный с красным кадмием) и

голубовато-зеленый 10 .

Следует особенно подчеркнуть, что красный, типа киновари или красного кадмия, не является дополнительным к зеленому, даже зеленому цвета изумрудной зелени. Матисс в своем натюрморте с золотыми рыбками противопоставляет зеленую листву фиолетово-розовому, а красные пятна рыбок - голубовато-зеленой воде. И это понятно. Он хочет повысить цветность сопоставлениями дополнительных цветов. Мы увидим дальше, что дополнительные цвета связаны с цветовыми конт­растами, которыми художники пользуются постоянно.

Новейшие экспериментальные исследования заставили несколько изменить геометрический образ множества цветов. В частности, идея сложения цветов нашла выражение в более точной модели - так называемом треугольнике смешения цве­тов. В вершинах треугольника смешения помещаются основные цвета ньютонов­ской цветовой системы - красный, зеленый, синий. Цвет суммы двух цветов нахо­дится по принципу центра тяжести на прямой, соединяющей соответствующие смешиваемым цветам точки треугольника смешения 11 .

С триадой Ньютона связаны все последующие попытки построить господ­ствующую и в наши дни, хотя все еще не доказанную, трехкомпонентную теорию цветового зрения.

Цветовая система Ньютона, нашедшая свое выражение в цветовом круге и в законах смешения цветов, не есть ли это наиболее общая формальная основа колорита - цветовой системы картины?

Недаром художники-колористы, с большей или меньшей долей теоретизиро­вания, говорили о цветовом круге и его использовании в живописи, недаром они изучали законы смешения цветов, пытаясь определить на их основе простейшие цветовые гармонии.

Рационалистическому строю творчества неоимпрессионистов идея научной систематики цветов оказалась особенно близкой. Синьяк, Сера с восторгом читали книгу Шеврёля, популярно излагавшую законы оптического суммирования и законы контраста, выраженные в цветовом

Сейчас яснее сильные и слабые стороны этих попыток.

Ньютон изучал эффекты от совместного действия разных цветов на один и тот же участок сетчатки глаза. Такое смешение цветов называется оптическим смешением. Пользуемся ли мы зеркальным смесителем, вертушкой или смешением посредством двух спектроскопов, мы получаем оптические смеси.

Оптические смеси получаются и в том случае, если разные цвета расположены достаточно мелкими пятнами рядом друг с другом (пространственное смешение). Живопись часто пользовалась пространственным смешением цветов. Законы про­странственного смешения знали на практике не только импрессионисты, но и вене­цианцы Высокого Возрождения, и Веласкес, и мастера помпейских росписей, и мастера фаюмских портретов (смотрите, например, «Портрет пожилого мужчины» из коллекции Государственного музея изобразительных искусств им. А. С. Пушкина). Цветные штрихи по основному пятну цвета на фресках Феофана Грека и его учеников свидетельствуют о практическом знании эффектов пространственного смешения, оживлявших цвет.

Но здесь нужна существенная оговорка. Речь идет именно о практическом знании эффектов оптического смешения цветов. Эффект оптического смешения зависит не только от качества смешиваемых цветов, но и от их количества. А приемы, которыми пользовались художники, соединяют эффекты оптического смешения с эффектами от способа нанесения красочного слоя.

Так, в «Руанском соборе в полдень» К. Мопе цветовой тон освещенной стены собора создан не полностью закрытыми зеленовато-рыжими рыхлыми западениями краски, розоватыми и желтоватыми мазками более плотного верхнего слоя, по кото­рому положены местами белильные мазки, получившие синеватый оттенок. Зеленовато-рыжее, розовое, синее - это слегка сдвинутая триада Ньютона. Из нее можно получить все оттенки цвета. Весь вопрос в количестве цветов, участвующих в смеси. Там, где синеватые белильные мазки верхнего слоя чаще, мы видим холодный (лиловатый) оттенок, там, где яснее розовая прокладка, - оранжевато-розовый, там, где активно участвует рыжий цвет, яснее выражена желтизна. Но даже на далеком расстоянии общность цветового тона стены не переходит в безразличное равенство, общий цвет оживлен переходами.

Теневые части стены «Руанского собора вечером» составлены из цветов, очень близких к цветам, использованным в дневном этюде. Чуть-чуть более темные рыжие западения, затем синеватый тоже рыхлый слой и поверх него белильные мазки розоватого оттенка. Одна и та же палитра, но другие количества цветов и другая последовательность их наложения. Художник пользовался одной и той же триадой цветов, близкой к основной ньютоновской триаде, и сохранил ясную цветность, сохранил, впрочем, на грани обесцвечивания. По сравнению, например, с любым холстом Матисса перед нами, конечно, монолитный поток сдержанных, разбеленных цветовых переходов.

Живопись пользовалась, пользуется и будет пользоваться оптическим смеше­нием цветов. Но едва ли можно одно из средств цветового построения представ­лять как единственную и обязательную его основу.

Теоретики неоимпрессионизма пытались представить законы оптического смеше­ния цветов как истинную основу цветовой системы картины. Ссылаясь на Шеврёля и Гельмгольца, они настаивали на преимуществах оптического смешения цветов по сравнению с физическим смешением красок.

Поль Синьяк в программной книге неоимпрессионизма писал: «Всякая мате­риальная смесь ведет не только к затемнению, но и к обесцвечиванию, всякая оптическая смесь, наоборот, ведет к ясности и блеску» 13 .

Синьяк требует «заменить всякую вещественную смесь противоположных красок их оптической смесью».

Но утверждение Синьяка совершенно бездоказательно.

Если пространственное смешение соседних пятен является полным (то есть цвета, вызывающие общий эффект, уже не различаются зрителем), оно не может иметь никаких преимуществ перед хорошо подобранной вещественной смесью-

Больше того, оптическое смешение любых цветов, как показывает цветовой круг, также ведет к известному обесцвечиванию (потере насыщенности), а сме­шение цветов, близких к дополнительным,- даже к сильному обесцвечиванию.

Действительная красота и цель импрессионистической кладки заключается в том оживлении общего цвета, которое вызывается неполным оптическим смеше­нием цветов. Тот же Синьяк подчеркивал, что для импрессионистической кладки чрезвычайно важно, чтобы был угадан - в соответствии с размером картины - размер мазка. Но почему же это важно? Ведь оптическое смешение будет тем лучше, чем мельче мазки? Наилучшее оптическое смешение достигается полным наложением световых потоков.

Поясним на примере. Если подвести зрителя вплотную к картине Сурикова «Боярыня Морозова», он не увидит в живописи снега пичего, кроме разноцветных мазков (полная раздельность цветов). Если отвести зрителя от картины, он увидит только голубоватый снег и ему будет совершенно безразлично, написан ли этот снег раздельными цветами или покрашен одной голубоватой краской (полное смешение). Ни то, ни другое положение относительно картины, однако, не является наилучшим и естественным. Легко убедиться, что. на том расстоянии, с которого лучше всего охватывается и богаче всего раскрывается для зрителя этот холст, смешение цветов в живописи снега остается неполным. Мы не видим раздельных мазков, но мы видим переливы цвета, игру теплых и холодных оттенков, игру рефлексов на снегу, его взрытую, мерцающую отражениями рыхлую структуру *. Импрессионисты для достижения «блеска» колорита также использовали неполное оптическое смешение цветов. Вспомним, что и Делакруа прибегал к неполному физи­ческому смешению красок на палитре, добиваясь аналогичного оживления цвета.

Именно неполное оптическое смешение цветов хорошо подходит для выра­жения импрессионистического видения, выбирающего в цветовых гармониях природы как главное непрерывную игру излучений. Но оживление цвета приемами пространственного смешения вовсе не предполагало импрессионистического виде­ния и применялось в разных живописных школах.

Очень хорошо писал о раздельности мазка и слитности красок Делакруа: «В конечном счете в произведении подлинного мастера все зависит от расстояния, с которого будешь смотреть на картину. На известном расстоянии мазок раство­рится в общем впечатлении, но он придаст живописи тот акцент, которого ей не может дать слитность красок» 14 .

Если художника, пытавшегося осмыслить цветовую систему картины, направ­ляла и поправляла его практика и он ошибался не столько в самой практике, сколько в том, что

* Для полноценного восприятия такой картины важно и разглядывать вблизи детали живописи и охватывать ее в целом, издали. Тогда еще яснее становится тайна рождения осмысленной цветности из пестроты красок.

преувеличивал ее значение, то некоторых теоретиков цветоведения увлечение научными открытиями привело к ложным обобщениям. Они не увидели разницы между законами оптического суммирования световых лучей, на основе которых построена цветовая система Ньютона, и законами, лежащими в основе цветового построения картины.

Думали, что колорит картины непременно основан или на паре дополнительных цветов, или на «гармонической» цветовой триаде (например, триаде - красное, зеленое, синее) 15 .

Но что же сказать в таком случае о противопоставлении красного и синего (без участия зеленого), столь характерном для картин многих великих колористов, желтого и черного, синего и белого? Трагический аккорд красных и синих в «Снятии с креста» Пуссена великолепен так же, как и аккорд желтых и синих в работах Вермеера, желтого и голубого - в «Кружевнице» (Париж, Лувр), лимонно-желтого и синего - в «Служанке с кувшином молока» (Амстердам, Рейкс-музей). Были и еще более абстрактные попытки вывести цветовые гармонии из числовых соотношений между синусами преломления (Ньютон, см. прим. 6) или между часто­тами колебаний отдельных монохроматических излучений, подобно тому как музы­кальные гармонии выводятся из простых числовых отношений между отрезками музыкальной хорды или частотами колебаний музыкальных тонов.

Нет нужды критиковать эти поздние отголоски пифагорейства. Наконец, посредством цветового круга пытались установить важное понятие цветовой гаммы. Изучая излюбленные цвета некоторых художников, определяли гамму художника (гамму Коро, гамму Рембрандта) как ограниченную область цветового круга, ось которого, проходя через точку белого, опирается на дополнительные цвета, один из которых доминирует как по размеру пятен, так и по насыщенности (цветовая доминанта) 16 . Мы еще вернемся к вопросу о цветовой гамме. Ее структура много сложнее той упрощенной схемы, которую можно получить из простого сопостав­ления красок картины с ньютоновской системой цветоощущения, выраженной в цветовом круге. Ньютоновская цветовая система описывает только одну сторону фактов - цветовое множество и не затрагивает цветового взаимодействия, она основана на законах оптического смешения, а художник имеет дело чаще всего не с оптическим смешением цветов. И вообще, бессмысленно искать цветовые гармонии абстрактным путем, если мы располагаем в качестве бесспорного материала множеством совершенных образцов, созданных великими колори­стами.

Однако оговоримся еще раз - бесплодность претензий па абстрактные законы красоты не означает бесполезность для искусствознания и художественной прак­тики цветоведения и физиологии цветового зрения.

Цветовой круг содержит все изменения цвета по цветовому гону и насы­щенности. Но цвета различаются, кроме того, по яркости (светлоте). В сов­ременном понимании полная система ньютоновских цветов, изменяющихся по трем параметрам - цветовому тону, насыщенности и светлоте, - это цвето­вое тело.

Множество точек цветового тела содержит все существующие цвета. Его структура отвечает законам смешения цветов (сечения тела плоскостями, перпен­дикулярными черно-белой оси, дают треугольники смешения) и трехкомпонентной теории цветового зрения. На основе цветового тела, зная параметры исходных цветов, можно рассчитать цвет их смеси. Вот почему цветоведение в его матема­тическом выражении называют исчислением цветов. Практическая важность такого исчисления для светотехники и колориметрии очевидна.

Здесь нет надобности говорить о цветовом теле и правилах исчисления цве­тов. Цветоведа и светотехника интересует изолированный цвет - точка цветового тела. Художник никогда не имеет дела с изолированным цветом.

Но художнику полезно иметь представление о некоторых специальных вопро­сах научной систематики цветов.

Яркость (светлота) и цветовой тон не являются вполне независимыми пара­метрами. Значительное уменьшение яркости излучения меняет цветовой тон. Примерная картина цветового сдвига при уменьшении яркости такова: зеленые синеют, синие приближаются к фиолетовым, желтые приближаются к оранжевым, оранжевые - к красным. Дальнейшее уменьшение яркости ведет к эффекту обес­цвечивания 17 .

Понятно, что то же самое должно происходить и с цветами картины при зна­чительном уменьшении ее освещенности. Вот почему сравнивать колористические качества картин можно только в условиях равной освещенности.

Большое увеличение яркости излучения вызывает другой эффект. Красные цвета переходят в оранжевые, затем - желтые, наконец - белые. Фиолетовые переходят в синие, затем - голубые. Очень сильный свет приводит к эффекту обесцвечивания.

Цветовой тон зависит также и от насыщенности, что доказывают факты изменения цветового тона при разбелке. При разбелке часть желтых розовеет, часть зеленеет, красное становится более пурпурным, зеленое синеет, синее при­ближается к фиолетовому 18 .

Изменение цветового тона при изменении яркости и разбелке, изучавшееся в психологии цветоощущения, относится к фактам оптического смешения цветов. Раздельная импрессионистическая кладка желтых пятен рядом с белыми вызывает впечатление оранжевого и даже розового. Кладка зеленых пятен рядом с белыми вызывает впечатление голубого.

На практике люди не различают цвет как физическое явление и ощущение цвета. Чаще всего мы соединяем в одном выражении объективную причину и особое качество вызванного этой причиной ощущения. Говорят: «желтый цвет», говорят, не отдавая себе отчета в том, что это словосочетание — гибрид. Свет — объективное явление. Его качества — это его спектр и его сила. Слово «желтый» обозначает качество ощущения. Белый дом, красный рефлекс — все это выражения-гибриды, хорошо передающие тесную связь объективного факта (причины) и его отражения нашим сознанием.

Качество ощущения связано со спектральным составом светового потока вовсе неоднозначно. «Желтой» может быть линия спектра (линия натрия 536 нм.). Такой же желтой может быть сумма «зеленого» и «красного» луча. И свет, содержащий полный спектр, может быть желтым (например, цвет солнечного диска). При известных условиях «ощущение» желтого цвета — «цветную тень» — может создать даже соседство зеленого и синего излучения. Я наблюдал двойную тень на снегу при двойном освещении ртутной лампой и луной. Свет ртутной лампы — белый, зеленоватый, луны — более теплый. Тень, освещенная только светом луны, была желтой (цвета желтой охры), светом лампы — синей (цвета пепельно-серого ультрамарина).

Попытки привести множество цветов в систему имеют дело не с физическими характеристиками светового потока, а с качествами ощущения.

Художника интересует прежде всего цветовая система как таковая, система, объединяющая качества видимого цвета, качества ощущения. Известны три основных качества цвета: цветовой тон, светлота и насыщенность. Надо, чтобы художники усвоили эту научную терминологию и не путали тон с цветовым тоном, насыщенность с яркостью цвета, освещенность со светлотой.

Цветовым тоном называют качества цвета, обозначаемые такими словами, как желтое, красное, синее, оранжевое, зеленое, сине-зеленое, пурпурное и т. д. Понятно, что между оранжевым и желтым, оранжевым и красным можно найти промежуточные цвета, более близкие к одному или другому цвету. Можно составить непрерывный замкнутый ряд изменений по цветовому тону от фиолетового через синие, зеленые, желтые, красные, пурпурные до исходного фиолетового. Все цвета, обладающие цветовым тоном, называются хроматическими в отличие от ахроматических (нейтральных) цветов — белого, серого и черного.

Нельзя указать однозначной физической основы для данного цветового тона . Между свойствами светового раздражителя и качеством ощущения связь осуществляет цветовое зрение, суммирующее раздражители по своим законам.

Светлотой называют качество цвета, присущее одинаково и хроматическим и ахроматическим цветам. Ахроматические цвета различаются только по светлоте, образуя непрерывный ряд от «абсолютно» черного до слепящего белого 4 .

Физической основой светлоты цвета служит яркость прямого или отраженного излучения. Светлоту не следует путать с белизной. Из предметных цветов самый светлый — белый, но распределение освещенности может сделать предметный белый более темным, чем серый (серое на солнце и белое в тени). Желтое пятно лампы светлее белого снега под ней. Сильное увеличение светлоты уменьшает число различий по цветовому тону. Так же, как все очень темные цвета сливаются в конце концов в один черный, так и очень светлые — на границе слепящего света — в один белый.

Насыщенностью называют большую или меньшую выраженность в цвете его цветового тона. Ахроматические цвета можно назвать цветами нулевой насыщенности. К максимально насыщенным цветам относятся, в частности, спектральные цвета . Однако нельзя указать однозначной физической основы насыщенности цвета. И здесь вмешиваются законы цветового зрения.

Колориста всегда увлекала задача создания на картине светло-насыщенных и темно-насыщенных цветов, особенно сочетание светлоты и насыщенности 5 .

Первая попытка привести видимые цвета в систему принадлежала Исааку Ньютону. Цветовая система Ньютона — цветовой круг, составленный из семи секторов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового 6 .

Нельзя не удивляться тому, как пришел Ньютон к идее цветового круга, объединяющей цвета в систему по признакам, присущим ощущению цвета, как создал он систему, воспринятую позднее с небольшими изменениями даже его крайним противником Гёте, систему, нужную художнику и удержавшуюся в основном до наших дней.

Заметив, экспериментируя со стеклами, разложение солнечного луча призмой — факт непрерывного изменения цвета в спектре, — Ньютон формулировал удивительную мысль о сложном составе простого солнечного луча. Если белый луч, проходя через призму, растягивается в ленту разных цветов от красного до фиолетового, все больше и больше отклоняясь от прямого пути, то белый луч — это сумма разноцветных излучений. Разные цветные лучи, обладая разным коэффициентом преломления, отклоняются от прямого пути на разную величину — меньше всего красные, больше всего фиолетовые.

Доказательства самого Ньютона не были безупречными, и Гёте придирчиво писал об этом. Для подтверждения разной преломляемости разных но цвету лучей Ньютон пользовался выкрасками. Мы знаем теперь, что свет, отраженный от выкраски, нельзя отождествлять со спектральным цветом. Цвет выкраски — сам сложен. Однако гениальная догадка оказалась верной. Казалось бы, Ньютон, как физик, интересующийся больше объективными величинами, чем ощущениями, должен был в качестве модели, объединяющей цвета, выбрать отрезок прямой, каждой точке которого отвечает свой коэффициент преломления. Так и поступают ученые, оставаясь на почве спектрального анализа.

Гениальность Ньютона, однако, сказалась и в том, что он не забыл другой стороны вопроса. Его удивление факту простоты цвета солнечного луча столь же удивительно, как и удивление фактур падения яблока.

Белый луч — это сумма излучений, значит, наше зрение суммирует цвета, порождая по определенным законам одни цвета из других. Физик стал на точку зрения физиолога 7 . И Ньютон испытал оптические суммы разных цветов. Вот что он получил. Смешение двух близких по спектру цветов дает цвет промежуточный между ними. Смешение красного и зеленого, оранжевого и синего, желтого и фиолетового дает цвет, близкий к белому.

Приемы смешения, которыми пользовался Ньютон, также не были безупречными. Но все законы оптического смешения были фактически предсказаны им. Он заметил и тот факт, что смешение фиолетового и красного цвета дает пурпурные цвета, которых нет в спектре. Таким образом, множество цветов оказалось не только непрерывным, но и замкнутым. Увидел Ньютон и то, что смешение не близких по спектру цветов всегда ведет к потере насыщенности, к подмеси белого (серого). Идея цветового круга была столько же естественным, сколько и удивительным следствием экспериментов гениального физика по смешению цветов, так же как идея самого смешения — естественным и удивительным следствием наблюдений над разложением солнечного луча.

Хотя художники должны на практике хорошо знать и цветовой круг и законы оптического суммирования, мы считаем полезным напомнить здесь эту азбуку цветоведения 8 .

По окружности цветового круга расположены непрерывно изменяющиеся но цветовому тону насыщенные цвета — спектральные и пурпурные. Против пурпурно-красного расположен зеленый цвет, против красного — сине-зеленый, против оранжевого — синий и против желтого — фиолетовый. На каждом радиусе расположены цвета одного цветового тона, непрерывно изменяющиеся по насыщенности от спектрального или пурпурного до белого, расположенного в центре круга. Изменение цвета по светлоте в цветовом круге не учитывается.

На цветовом круге легко наглядно показать три закона оптического смешения цветов. Согласно идее Ньютона, цвет смеси находится (по принципу центра тяжести) на прямой, соединяющей смешиваемые цвета, ближе к тому цвету, которого в смеси «больше».

Соединим хордой два близких спектральных цвета, например оранжевый и красный. Их оптическая сумма расположена на хорде и будет, очевидно, обладать цветовым тоном цвета, промежуточного между смешиваемыми цветами. Эго правило оптического смешения, полученное Ньютоном. Легко заметить, что любое смешение цветов ведет к потере насыщенности. Чем дальше друг от друга смешиваемые спектральные цвета, тем больше потеря насыщенности в цвете смеси.

Наконец, наиболее удаленные друг от друга цвета, цвета диаметрально противоположные на цветовом круге, например желтый и фиолетовый, дают при смешении в «равных количествах» белый цвет. Такие цвета называют дополнительными. Итак, дополнительные цвета, смешанные в «равных количествах», взаимно нейтрализуются. Это второе правило оптического смешения. Наконец, сумму двух цветов можно смешать с третьим цветом. Эффект смешения как легко убедиться на цветовом, круге, не будет зависеть от того, как составлен каждый из смешиваемых цветов. При смешении каждый цвет как бы он ни был сложен, рассматривается как простой цвет — точка цветового круга. Это третье правило оптического смешения 9 .

Очевидно, можно выбрать три спектральных цвета, смешение которых в разных количествах может дать все или почти все цвета цветового круга. Такой цветовой триадой принято теперь считать триаду — красный, зеленый, синий. Красный, зеленый и синий называют основными цветами ньютоновской цветовой системы.

Последующие исследования лишь уточняли эту систему.

Новейшие экспериментальные данные о дополнительных цветах фиксируют следующие пары: синий (сходный с ультрамарином темным) и желтый (сходный с желтым кадмием); фиолетовый (сходный с фиолетовым кобальтом лилового оттенка) и зеленовато-желтый; пурпурный (сходный с фиолетовым краплаком) и зеленый (сходный с травяной зеленью); голубой (сходный с берлинской лазурью) и оранжевый; красный (сходный с красным кадмием) и голубовато-зеленый 10 .

Следует особенно подчеркнуть, что красный, типа киновари или красного кадмия, не является дополнительным к зеленому, даже зеленому цвета изумрудной зелени. Матисс в своем натюрморте с золотыми рыбками противопоставляет зеленую листву фиолетово-розовому, а красные пятна рыбок — голубовато-зеленой воде. И это понятно. Он хочет повысить цветность сопоставлениями дополнительных цветов. Мы увидим дальше, что дополнительные цвета связаны с цветовыми контрастами, которыми художники пользуются постоянно.

Новейшие экспериментальные исследования заставили несколько изменить геометрический образ множества цветов. В частности, идея сложения цветов нашла выражение в более точной модели — так называемом треугольнике смешения цветов. В вершинах треугольника смешения помещаются основные цвета ньютоновской цветовой системы — красный, зеленый, синий. Цвет суммы двух цветов находится по принципу центра тяжести на прямой, соединяющей соответствующие смешиваемым цветам точки треугольника смешения 11 .

С триадой Ньютона связаны все последующие попытки построить господствующую и в наши дни, хотя все еще не доказанную, трехкомпонентную теорию цветового зрения.

Цветовая система Ньютона, нашедшая свое выражение в цветовом круге и в законах смешения цветов, не есть ли это наиболее общая формальная основа колорита — цветовой системы картины?

Недаром художники-колористы, с большей или меньшей долей теоретизирования, говорили о цветовом круге и его использовании в живописи, недаром они изучали законы смешения цветов, пытаясь определить на их основе простейшие цветовые гармонии.

Рационалистическому строю творчества неоимпрессионистов идея научной систематики цветов оказалась особенно близкой. Синьяк, Сера с восторгом читали книгу Шеврёля, популярно излагавшую законы оптического суммирования и законы контраста, выраженные в цветовом круге 12 .

Сейчас яснее сильные и слабые стороны этих попыток.

Ньютон изучал эффекты от совместного действия разных цветов на один и тот же участок сетчатки глаза. Такое смешение цветов называется оптическим смешением. Пользуемся ли мы зеркальным смесителем, вертушкой или смешением посредством двух спектроскопов, мы получаем оптические смеси.

Оптические смеси получаются и в том случае, если разные цвета расположены достаточно мелкими пятнами рядом друг с другом (пространственное смешение). Живопись часто пользовалась пространственным смешением цветов. Законы пространственного смешения знали на практике не только импрессионисты, но и венецианцы Высокого Возрождения, и Веласкес, и мастера помпейских росписей, и мастера фаюмских портретов (смотрите, например, «Портрет пожилого мужчины» из коллекции Государственного музея изобразительных искусств им. А. С. Пушкина). Цветные штрихи по основному пятну цвета на фресках Феофана Грека и его учеников свидетельствуют о практическом знании эффектов пространственного смешения, оживлявших цвет.

Но здесь нужна существенная оговорка. Речь идет именно о практическом знании эффектов оптического смешения цветов. Эффект оптического смешения зависит не только от качества смешиваемых цветов, но и от их количества. А приемы, которыми пользовались художники, соединяют эффекты оптического смешения с эффектами от способа нанесения красочного слоя.


ЦВЕТ – э то форма световой энергии, передаваемая в виде волн Факторы, влияющие на внешний вид конкретного цвета: источник света информация об окружающих предметах ваши глаза Способы образования цвета в природе: источники света (солнце, лампочка и т.д.) излучают свет различных длин волн спектра. Этот свет воспринимается глазом как цветной. свет отражается и поглощается, попадая на поверхность несветящихся предметов. Отраженное излучение воспринимается глазом как окраска предметов.


ЦВЕТОВАЯ СИСТЕМА Цветовая система это математическая модель для описания излучаемого и отраженного цвета В каждой модели определенный диапазон цветов представляют в виде трехмерного пространства. В этом пространстве каждый цвет существует в виде набора числовых координат. Этот метод дает возможность передавать цветовую информацию между компьютерами, программами и периферийными устройствами.




ЦВЕТОВАЯ МОДЕЛЬ RGB Описывает излучаемые цвета Основная область применения – описание цветового пространства монитора Модель образована тремя цветами – красным (Red), зеленым (Green) и синим (Blue) Модель является аддитивной, т.е при смешении двух цветов, результирующий будет светлее исходных. Сумма всех трех цветов дает белый цвет Поскольку модель аппаратно- зависима, то в результате на разных мониторах одно и то же изображение будет выглядеть неодинаково.


ЦВЕТОВАЯ МОДЕЛЬ CMY(K) Описывает отраженные цвета Область применения – полиграфия, Модель образована тремя цветами: голубым (Cyan), пурпурным (Magenta), и желтым (Yellow) – «Полиграфическая триада» Эти цвета получены путем вычитания из белого основных цветов модели RGB. На практике, в модель включают 4 й цвет – черный (blacK). Модель является субтрактивной, т.е. при смешении любых двух цветов результирующий будет темнее исходных Модель также аппаратно-зависима, - оттиски на различных устройствах будут выглядеть по разному.


ЦВЕТОВЫЕ МОДЕЛИ HSB / HSL Модель построена на субъективном восприятии цвета человеком. Этой моделью удобно пользоваться художникам Любой цвет определяется своим тоном (Hue), насыщенностью (Saturation) и яркостью (Brightness) или светимостью (Lightness) Модель HSB описывает отраженный цвет, модель HSL – излучаемый. Модель аппаратно-зависимая, и не соответствует восприятию человеческого глаза


ЦВЕТОВЫЕ МОДЕЛИ HSV / HSI Во многом схожи с моделями HSB / HSL, но в отличии от них более абстрактны в описании яркостной компоненты, не привязывая её физической природе цвета. Яркостная компонента обозначается как «значение» (Volume) или как интенсивность (Intensity) На рисунке приведено изображение модели HSL в цилиндрических координатах


ЦВЕТОВАЯ МОДЕЛЬ LAB Аппаратно-независимая модель Описывает цвета так, как они воспринимаются человеком Базовые компонентов L, a и b. Компонент L несет информацию о яркостях изображения, а компоненты а и b - о его цветах. Компонент а изменяется от зеленого до пурпурного, а b - от синего до желтого Модель имеет самый широкий цветовой охват, и используется для при конвертации одних цветовых моделей в другие.


ЦВЕТОВАЯ МОДЕЛЬ YUV Используется при кодировании изображений по методу JPEG, а также телевизионных сигналов стандарта PAL, методами M-JPEG, MPEG, iYCrCb, HuffYUV. В цветовом пространстве YUV, Y - яркостная составляющая, а U и V - компоненты, отвечающие за цвет (хроматический красный и хроматический синий). Иногда для компонент U и V встречаются обозначения Cr и Cb соответственно. За счет того, что человеческий глаз менее чувствителен к цвету, чем к яркости, появляется возможность архивировать массивы для U и V компонент с большими потерями и, соответственно, большими коэффициентами сжатия. Модель является аппаратно-независимой


КОДИРОВАНИЕ ЦВЕТА При описании растрового изображения, для каждой точки определяется её цвет, в соответствии с выбранной цветовой моделью. Цветовая глубина изображения, т.е. максимальное количество цветовых оттенков, определяется количеством бит, отводимых на описание цвета каждого пиксела. Рассмотренные цветовые модели являются, 24-битными. Т.е. на каждый из трёх цветовых компонентов отводится не менее 8 бит, или 256 градаций. Таким образом, максимальное число цветовых оттенков составляет Современные видеокарты оперируют 32-битным цветовым пространством, а некоторые модели и 48-битным. Это существенно превышает цветовой охват всех реальных устройств и технологий воспроизведения цветовой графики, кроме аналоговой фотографии.




КОДИРОВАНИЕ СЕРЫХ ИЗОБРАЖЕНИЙ Серым (grayscale) изображением, называется то, которое не содержит информации о цветовом тоне. При описании такого изображения в системе RGB, все три значения цветовых компонент равны: RGB 0,0,0 – черный цвет RGB 128,128,128 – 50% серого RGB 255,255,255 – белый цвет Для кодирования такого изображения без потерь достаточно 8 бит на каждый оттенок. Т.е максимальное число оттенков серого в таком изображении – 256 Для других цветовых моделей (CMYK, HSx, Lab) правило равенства значений цветовых компонент не выполняется! В моделях HSx и Lab меняется только яркостные компоненты (х и L), а остальные равны 0 В модели CMYK значения компонентов M и Y равны друг другу и всегда меньше значения компоненты С


ИНДЕКСИРОВАННЫЕ ЦВЕТА Цветовое кодирование с использованием фиксированной палитры цветов. Количество цветовых оттенков в изображении – от 2 до 256. Все используемые цвета описываются в палитре (индексируются) в соответствии с выбранной цветовой моделью. При кодировании изображения, в качестве цветовой характеристики каждого пиксела указывается номер (индекс) соответствующего цвета в палитре. Этот вид кодирования вносит существенные искажения в цветовое пространство изображения


ТЕХНОЛОГИИ ИНДЕКСНОГО КОДИРОВАНИЯ Для уменьшения искажений цветового пространства при переходе к индексным цветам применяют следующие подходы: Адаптивный подбор цветов в палитре, в соответствии с оттенками, преобладающими в изображениями. Дитеринг (dithering) – добавление цветового шума из индексированных цветов, близких к исходному оттенку


ЦВЕТОВОЙ ПРОФИЛЬ Все устройства вывода изображений используют аппаратно-зависимые модели цветового кодирования. Для того чтобы обеспечить соответствие и коррекцию цветовых пространств различных устройств, используются цветовые профили (icc или icm профайлы) Цветовой профиль описывает ключевые точки цветового пространства конкретного устройства в модели Lab (точки белого и черного, точки чистых цветов – напр. красного, зеленого, синего если описываемое устройство работает с моделью RGB)


ЦВЕТОВОЙ МЕНЕДЖМЕНТ Цветовой менеджмент (управление цветом) - комплекс программных средств, аппаратных настроек и мероприятий по обеспечению правильной цветопередачи на всех стадиях работы с изображением (получение, обработка, печать) Программный менеджер цвета сравнивает цветовые профили устройств, и корректирует их цветопередачу.


КАЛИБРОВКА ЦВЕТОПЕРЕДАЧИ Настройка всех устройств вывода изображений на правильную передачу эталонных цветов, с учетом субъективных факторов цветового восприятия: качества и износа устройства освещенности и цветовой гаммы помещения индивидуальных особенностей зрения Калибровка устройств должна проводиться с заданной периодичностью


ЦВЕТОВЫЕ СИСТЕМЫ В WEB-ДИЗАЙНЕ Поскольку целевым устройством просмотра веб- страницы является монитор, то основной цветовой моделью здесь является RGB Существует так называемая web-палитра из 216 «безопасных» цветов, которые отображаются одинаково на любом мониторе (без дитеринга). Эти цвета рекомендуется использовать в качестве основных, при оформлении веб-страниц




Top