Случайная величина задана плотностью распределения найти дисперсию. Непрерывная случайная величина, функция распределения и плотность вероятности


Плотностью распределения вероятностей Х называют функцию f(x) – первую производную от функции распределения F(x) :

Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима.

Плотность распределения вероятностей f(x) – называют дифференциальной функцией распределения:

Свойство 1. Плотность распределения - величина неотрицательная:

Свойство 2. Несобственный интеграл от плотности распределения в пределах от до равен единице:

Пример 1.25. Дана функция распределения непрерывной случайной величины Х:

f(x) .

Решение: Плотность распределения равна первой производной от функции распределения:

1. Дана функция распределения непрерывной случайной величины Х:

Найти плотность распределения.

2. Задана функция распределения непрерывной случайной величины Х:

Найти плотность распределения f(x).

1.3. Числовые характеристики непрерывной случайной

величины

Математическое ожидание непрерывной случайной величины Х , возможные значения которой принадлежат всей оси Ох , определяется равенством:

Предполагается, что интеграл сходится абсолютно.

a,b ), то:

f(x) – плотность распределения случайной величины.

Дисперсия непрерывной случайной величины Х , возможные значения которой принадлежат всей оси, определяется равенством:

Частный случай. Если значения случайной величины принадлежат интервалу (a,b ), то:

Вероятность того, что Х примет значения, принадлежащие интервалу (a,b ), определяется равенством:

.

Пример 1.26. Непрерывная случайная величина Х

Найти математическое ожидание, дисперсию и вероятность попадание случайной величины Х в интервале (0;0,7).

Решение: Случайная величина распределена на интервале (0,1). Определим плотность распределения непрерывной случайной величины Х :

а) Математическое ожидание :

б) Дисперсия

в)

Задания для самостоятельной работы:

1. Случайная величина Х задана функцией распределения:

M(x) ;

б) дисперсию D(x) ;

Х в интервал (2,3).

2. Случайная величина Х

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал (1;1,5).

3. Случайная величина Х задана интегральной функцией распределения:

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал .

1.4. Законы распределения непрерывной случайной величины

1.4.1. Равномерное распределение

Непрерывная случайная величина Х имеет равномерное распределение на отрезке [a,b ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, а вне его равна нулю, т.е.:

Рис. 4.

; ; .

Пример 1.27. Автобус некоторого маршрута движется равномерно с интервалом 5 минут. Найти вероятность того, что равномерно распределенная случайная величина Х – время ожидания автобуса составит менее 3 минут.

Решение: Случайная величина Х – равномерно распределена на интервале .

Плотность вероятности: .

Для того чтобы время ожидания не превысило 3 минут, пассажир должен появиться на остановке в интервале от 2 до 5 минут после ухода предыдущего автобуса, т.е. случайная величина Х должна попасть в интервал (2;5). Т.о. искомая вероятность:

Задания для самостоятельной работы:

1. а) найти математическое ожидание случайной величины Х распределенной равномерно в интервале (2;8);

б) найти дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной равномерно в интервале (2;8).

2. Минутная стрелка электрических часов перемещается скачком в конце каждом минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 секунд.

1.4.2. Показательное (экспоненциальное) распределение

Непрерывная случайная величина Х распределена по показательному закону, если ее плотность вероятности имеет вид:

где – параметр показательного распределения.

Таким образом

Рис. 5.

Числовые характеристики:

Пример 1.28. Случайная величина Х – время работы электролампочки - имеет показательное распределение. Определить вероятность того, что время работы лампочки будет не меньше 600 часов, если среднее время работы - 400 часов.

Решение: По условию задачи математическое ожидание случайной величины Х равно 400 часам, следовательно:

;

Искомая вероятность , где

Окончательно:


Задания для самостоятельной работы:

1. Написать плотность и функцию распределения показательного закона, если параметр .

2. Случайная величина Х

Найти математическое ожидание и дисперсию величины Х .

3. Случайная величина Х задана функцией распределения вероятностей:

Найти математическое ожидание и среднее квадратическое отклонение случайной величины.

1.4.3. Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины Х , плотность которого имеет вид:

где а – математическое ожидание, – среднее квадратическое отклонение Х .

Вероятность того, что Х примет значение, принадлежащее интервалу :

, где

– функция Лапласа.

Распределение, у которого ; , т.е. с плотностью вероятности называется стандартным.

Рис. 6.

Вероятность того, что абсолютная величина отклонена меньше положительного числа :

.

В частности, при а= 0 справедливо равенство:

Пример 1.29. Случайная величина Х распределена нормально. Среднее квадратическое отклонение . Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Решение: .


Задания для самостоятельной работы:

1. Написать плотность вероятности нормального распределения случайной величины Х , зная, что M(x)= 3, D(x)= 16.

2. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (15;20).

3. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением мм и математическим ожиданием а= 0. Найти вероятность того, что из 3 независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4 мм.

4. Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10 г.

Функцией распределения случайной величиныХ называется функцияF (х ), выражающая для каждогох вероятность того, что случайная величинаХ примет значение, меньшеех :.

Функцию F (х ) иногда называют интегральной функцией распределения, или интегральным законом распределения .

Случайная величина Х называется непрерывной , если ее функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

Примеры непрерывных случайных величин: диаметр детали, которую токарь обтачивает до заданного размера, рост человека, дальность полета снаряда и др.

Теорема. Вероятность любого отдельно взятого значения непрерывной случайной величины равна нулю

.

Следствие. Если Х - непрерывная случайная величина, то вероятность попадания случайной величины в интервал
не зависит от того, является этот интервал открытым или закрытым, т.е.

Если непрерывная случайная величина Х может принимать только значения в границах от а до b (где а и b - некоторые постоянные), то функция распределения ее равна нулю для всех значений
и единице для значений
.

Для непрерывной случайной величины

Все свойства функций распределения дискретных случайных величин выполняются и для функций распределения непрерывных случайных величин.

Задание непрерывной случайной величины с помощью функции распределения не является единственным.

Плотностью вероятности (плотностью распределения или плотностью ) р (х ) непрерывной случайной величины Х называется производная ее функции распределения

.

Плотность вероятности р (х ), как и функция распределенияF (х ), является одной из форм закона распределения, но в отличие от функции распределения она существует только длянепрерывных случайных величин.

Плотность вероятности иногда называют дифференциальной функцией, или дифференциальным законом распределения .

График плотности вероятности называется кривой распределения.

Свойства плотности вероятности непрерывной случайной величины:


Рис. 8.1


Рис. 8.2

4.
.

Геометрически свойства плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример 8.1. Минутная стрелка электрических часов передвигается скачками поминутно. Вы бросили взгляд на часы. Они показывают а минут. Тогда для вас истинное время в данный момент будет случайной величиной. Найти ее функцию распределения.

Решение. Очевидно, что функция распределения истинного времени равна 0 для всех
и единице для
. Время течет равномерно. Поэтому вероятность того, что истинное время меньше а + 0,5 мин, равна 0,5, так как одинаково вероятно, прошло ли после а менее или более полминуты. Вероятность того, что истинное время меньше а + 0,25 мин, равна 0,25 (вероятность этого времени втрое меньше вероятности того, что истинное время больше а + 0,25 мин, а сумма их равна единице, как сумма вероятностей противоположных событий). Аналогично рассуждая, найдем, что вероятность того, что истинное время меньше а + 0,6 мин, равна 0,6. В общем случае вероятность того, что истинное время меньше а + + α мин
, равна α . Следовательно, функция распределения истинного времени имеет следующее выражение:

Она непрерывна всюду, а производная ее непрерывна во всех точках, за исключением двух:х = а их = а + 1. График этой функции имеет вид (рис. 8.3):

Рис. 8.3

Пример 8.2. Является ли функцией распределения некоторой случайной величины функция

Решение.

Все значения этой функции принадлежат отрезку
, т.е.
. Функция F (х ) является неубывающей: в промежутке
она постоянна, равна нулю, в промежутке
возрастает, в промежутке
также постоянна, равна единице (см. рис. 8.4). Функция непрерывна в каждой точке х 0 области ее определения - промежутка
, поэтому непрерывна слева, т.е. выполняется равенство


,
.

Выполняются и равенства:


,
.

Следовательно, функция
удовлетворяет всем свойствам, характерным для функции распределения. Значит данная функция
является функцией распределения некоторой случайной величиныХ .

Пример 8.3. Является ли функцией распределения некоторой случайной величины функция

Решение. Данная функция не является функцией распределения случайной величины, так как напромежутке
она убывает и не является непрерывной. График функции изображен на рис. 8.5.

Рис. 8.5

Пример 8.4. Случайная величина Х задана функцией распределения

Найти коэффициент а и плотность вероятности случайной величины Х . Определить вероятность неравенства
.

Решение. Плотность распределения равна первой производной от функции распределения

Коэффициент а определяем с помощью равенства

,

.

Тот же результат можно было получить, используя непрерывность функции
в точке


,
.

Следовательно,
.

Поэтому плотность вероятности имеет вид

Вероятность
попадания случайной величины Х в заданный промежуток вычисляется по формуле

Пример 8.5. Случайная величина Х имеет плотность вероятности (закон Коши)

.

Найти коэффициент а и вероятность того, что случайная величина Х примет какое-нибудь значение из интервала
. Найти функцию распре­деления этой случайной величины.

Решение. Найдем коэффициент а из равенства

,

Следовательно,
.

Итак,
.

Вероятность того, что случайная величина Х примет какое-нибудь значение из интервала
, равна

Найдем функцию распределения данной случайной величины

Пример 8.6. График плотности вероятности случайной величиныХ изображен на рис. 8.6 (закон Симпсона). Написать выражение плотности вероятности ифункцию распределения этой случайной величины.

Рис. 8.6

Решение. Пользуясь графиком, записываем аналитическое выражение плотности распределения вероятностей данной случайной величины

Найдем функцию распределения.

Если
, то
.

Если
, то .

Если
, то

Если
, то

Следовательно, функция распределения имеет вид

9. Непрерывная случайная величина, её числовые характеристики

Непрерывную случайную величину можно задать с помощью двух функций. Интегральной функцией распределения вероятностей случайной величины Х называется функция , определённая равенством
.

Интегральная функция даёт общий способ задания как дискретных, так и непрерывных случайных величин. В случае непрерывной случайной величины . Все события: имеют одну и ту же вероятность, равную приращению интегральной функции на этом промежутке, т.е.. Например, для дискретной случайной величины, заданной в примере 26, имеем:


Таким образом, график интегральной функции рассматриваемой функции представляет собой объединение двух лучей и трёх отрезков, параллельных оси Ох.

Пример 27 . Непрерывная случайная величина Х задана интегральной функцией распределения вероятностей

.

Построить график интегральной функции и найти вероятность того, что в результате испытания случайная величина Х примет значение в интервале (0,5;1,5).

Решение. На интервале
графиком является прямая у = 0. На промежутке от 0 до 2 – парабола, заданная уравнением
. На интервале
графиком является прямая у = 1.

Вероятность того, что случайная величина Х в результате испытания примет значение в интервале (0,5;1,5) находим по формуле .

Таким образом, .

Свойства интегральной функции распределения вероятностей:

Закон распределения непрерывной случайной величины удобно задавать с помощью другой функции, а именно, функции плотности вероятности
.

Вероятность того, что значение, принятое случайной величиной Х, попадает в интервал
, определяется равенством
.

График функции называется кривой распределения . Геометрически вероятность попадания случайной величины Х в промежуток равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми
.

Свойства функции плотности вероятности :


9.1. Числовые характеристики непрерывных случайных величин

Математическое ожидание (средним значением) непрерывной случайной величины Х определяется равенством
.

М(Х) обозначают через а . Математическое ожидание непрерывной случайной величины обладает аналогичными, как и дискретная величина, свойствами:

Дисперсией дискретной случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания, т.е. . Для непрерывной случайной величины дисперсия определяется формулой
.

Дисперсия обладает свойствами:


Последнее свойство очень удобно применять для нахождения дисперсии непрерывной случайной величины.

Аналогично вводится и понятие среднего квадратического отклонения. Средним квадратическим отклонением непрерывной случайной величины Х называется корень квадратный из дисперсии, т.е.
.

Пример 28 . Непрерывнаяслучайная величина Х задана функцией плотности вероятностей
в интервале (10;12), вне этого промежутка значение функции равно 0. Найти 1) значение параметра а, 2) математическое ожидание М(Х), дисперсию
, среднее квадратическое отклонение, 3) интегральную функцию
и построить графики интегральной и дифференциальной функций.

1). Для нахождения параметра а используем формулу
. Получим . Таким образом,
.

2). Для нахождения математического ожидания используем формулу: , откуда следует, что
.

Дисперсию будем находить по формуле:
, т.е. .

Найдём среднее квадратическое отклонение по формуле: , откуда получим, что
.

3). Интегральная функция выражается через функцию плотностей вероятностей следующим образом:
. Следовательно,
при
, = 0 при
и = 1 при
.

Графики этих функций представлены на рис. 4. и рис. 5.

Рис.4 Рис.5.

9.2. Равномерное распределение вероятностей непрерывной случайной величины

Распределение вероятностей непрерывной случайной величины Х равномерно на интервале , если её плотность вероятности постоянна на этом интервале и равна нулю вне этого интервала, т.е. . Легко показать, что в этом случае
.

Если интервал
содержится в интервале , то
.

Пример 29. Событие, состоящее из мгновенного сигнала, должно произойти между часом дня и пятью часами. Время ожидания сигнала есть случайная величина Х. Найти вероятность того, что сигнал будет зафиксирован между двумя и тремя часами дня.

Решение. Случайная величина Х имеет равномерное распределение, и по формуле найдём, что вероятность того, что сигнал будет между 2 и 3 часами дня, равна
.

В учебной и другой литературе часто обозначают в литературе через
.

9.3. Нормальное распределение вероятностей непрерывной случайной величины

Распределение вероятностей непрерывной случайной величины называется нормальным, если её закон распределения вероятностей определяется плотностью вероятности
. Для таких величин а – математическое ожидание,
- среднее квадратическое отклонение.

Теорема. Вероятность попадания нормально распределённой непрерывной случайной величины в заданный интервал
определяется по формуле
, где
- функция Лапласа.

Следствием этой теоремы является правило трёх сигм , т.е. практически достоверно, что нормальна распределённая, непрерывная случайная величина Х принимает свои значения в интервале
. Это правило выводимо из формулы
, являющейся частным случаем сформулированной теоремы.

Пример 30. Срок работы телевизора представляет собой случайную величину Х, подчинённую нормальному закону распределения, с гарантийным сроком 15 лет и средним квадратическим отклонением, равным 3 годам. Найти вероятность того, что телевизор проработает от 10 до 20 лет.

Решение. По условию задачи математическое ожидание а = 15, среднее квадратическое отклонение .

Найдём . Таким образом, вероятность работы телевизора от 10 до 20 лет более 0,9.

9.4.Неравенство Чебышева

Имеет место лемма Чебышева . Если случайная величина Х принимает только неотрицательные значения и имеет математическое ожидание, то для любого положительного в
.

Учитывая, что , как сумма вероятностей противоположных событий, получим, что
.

Теорема Чебышева. Если случайная величина Х имеет конечную дисперсию
и математическое ожидание М(Х), то для любого положительного справедливо неравенство

.

Откуда следует, что
.

Пример 31. Изготовлена партия деталей. Среднее значение длины деталей равна100 см., а среднее квадратическое отклонение равно 0,4см. Оценить снизу вероятность того, что длина наудачу взятой детали окажется не менее 99см. и не более 101см.

Решение. Дисперсия . Математическое ожидание равно 100. Следовательно, для оценки снизу вероятности рассматриваемого события
применим неравенство Чебышева , в котором
, тогда
.

10. Элементы математической статистики

Статистической совокупностью называют множество однородных предметов или явлений. Число п элементов этого множества называется объёмом совокупности. Наблюдаемые значения признака Х называют вариантами . Если варианты расположены в возрастающей последовательности, то получен дискретный вариационный ряд . В случае группировки вариант по интервалам получается интервальный вариационный ряд . Под частотой т значения признака понимают число членов совокупности с данной вариантой.

Отношение частоты к объёму статистической совокупности называют относительной частотой признака:
.

Соотношение между вариантами вариационного ряда и их частотами называют статистическим распределением выборки . Графическим представлением статистического распределения может служить полигон частот.

Пример 32. Путём опроса 25 студентов первого курса получены следующие данные об их возрасте:
. Составить статистическое распределение студентов по возрасту, найти размах варьирования, построить полигон частот и составить ряд распределения относительных частот.

Решение. Используя данные, полученные при опросе, составим статистическое распределение выборки

Размах выборки варьирования равен 23 – 17 = 6. Для построения полигона частот, строят точки с координатами
и последовательно их соединяют.

Ряд распределения относительных частот имеет вид:

10.1.Числовые характеристики вариационного ряда

Пусть выборка задана рядом распределения частот признака Х:

Сумма всех частот равна п.

Средним арифметическим выборки называют величину
.

Дисперсией или мерой рассеяния значений признака Х по отношению к его среднему арифметическому называют величину
. Средним квадратическим отклонением называют корень квадратный из дисперсии, т.е. .

Отношение среднего квадратического отклонения к среднему арифметическому выборки, выраженное в процентах, называют коэффициентом вариации :
.

Эмпирической функцией распределения относительных частот называют функцию, определяющую для каждого значения относительную частоту события
, т.е.
, где - число вариант, меньших х , а п – объём выборки.

Пример 33. В условиях примера 32 найти числовые характеристики
.

Решение. Найдём среднее арифметическое выборки по формуле , тогда .

Дисперсия признака Х находится по формуле: , т. е. . Среднее квадратическое отклонение выборки равно
. Коэффициент вариации равен
.

10.2. Оценка вероятности по относительной частоте. Доверительный интервал

Пусть проводится п независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна р . В этом случае вероятность того, что относительная частота будет отличаться от вероятности появления события А в каждом испытании по абсолютной величине не больше, чем на , приближённо равна удвоенному значению интегральной функции Лапласа:
.

Интервальной оценкой называют такую оценку, которая определяется двумя числами, являющимися концами интервала, покрывающего оцениваемый параметр статистической совокупности.

Доверительным интервалом называют интервал, который с заданной доверительной вероятностью покрывает оцениваемый параметр статистической совокупности. Рассматривая формулу , в которой заменим неизвестную величину р на её приближённое значение , полученное по данным выборки, получим:
. Эта формула служит для оценки вероятности по относительной частоте. Числа
и
называют нижней и соответственно верхней доверительными границами , - предельной погрешностью для данной доверительной вероятности
.

Пример 34 . Заводской цех выпускает электрические лампочки. При проверке 625 ламп оказалось 40 бракованных. Найти с доверительной вероятностью 0,95 границы, в которых заключён процент брака лампочек, выпускаемых заводским цехом.

Решение. По условию задачи . Используем формулу
. По таблице 2 приложения находим значение аргумента, пи котором значение интегральной функции Лапласа равно 0,475. Получим, что
. Таким образом, . Следовательно, можно сказать с вероятностью 0,95, что доля выпускаемого брака цехом высока, а именно, изменяется в пределах от 6,2% до 6,6%.

10.3. Оценка параметров в статистике

Пусть количественный признак Х всей исследуемой совокупности (генеральной совокупности) имеет нормальное распределение.

Если среднее квадратическое отклонение известно, то доверительный интервал, покрывающий математическое ожидание а

, где п – объём выборки, - выборочная средняя арифметическая, t – аргумент интегральной функции Лапласа, при котором
. При этом число
называют точностью оценки.

Если среднее квадратическое отклонение неизвестно, то по данным выборки можно построить случайную величину, имеющую распределение Стьюдента с п – 1 степенями свободы, которое определяется только одним параметром п и не зависит от неизвестных а и . Распределение Стьюдента даже для малых выборок
даёт вполне удовлетворительные оценки. Тогда доверительный интервал, покрывающий математическое ожидание а этого признака с заданной доверительной вероятностью , находится из условия

, где S – исправленное среднее квадратическое, - коэффициент Стьюдента, находится по данным
из таблицы 3 приложения.

Доверительный интервал, покрывающий среднее квадратическое отклонение этого признака с доверительной вероятностью , находится по формулам: и , где
находится по таблице значений q по данным .

10.4. Статистические методы изучения зависимостей между случайными величинами

Корреляционной зависимостью У от Х называют функциональную зависимость условной средней от х. Уравнение
представляет уравнение регрессии У на Х, а
- уравнение регрессии Х на У.

Корреляционная зависимость может быть линейной и криволинейной. В случае линейной корреляционной зависимости уравнение прямой линии регрессии имеет вид:
, где угловой коэффициент а прямой линии регрессии У на Х называется выборочным коэффициентом регрессии У на Х и обозначается
.

При малых выборках данные не группируются, параметры
находятся по методу наименьших квадратов из системы нормальных уравнений:

, где п – число наблюдений значений пар взаимосвязанных величин.

Выборочный линейный коэффициент корреляции показывает тесноту связи У и Х. Коэффициент корреляции находится по формуле
, причём
, а именно:


Выборочное уравнение прямой линии регрессии У на Х имеет вид:

.

При большом числе наблюдений признаков Х и У составляется корреляционная таблица с двумя входами, при этом одно и то же значение х наблюдается раз, одно и то же значение у наблюдается раз, одна и та же пара
наблюдается раз.

Пример 35. Дана таблица наблюдений признаков Х и У.

Найти выборочное уравнение прямой линии регрессии У на Х.

Решение. Связь между изучаемыми признаками может быть выражена уравнением прямой линии регрессии У на Х: . Для вычисления коэффициентов уравнения составим расчётную таблицу:

№ наблюдения

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

Глава 1. Дискретная случайная величина

§ 1.Понятия случайной величины.

Закон распределения дискретной случайной величины.

Определение : Случайной называется величина, которая в результате испытания принимает только одно значение из возможного множества своих значение, наперед неизвестное и зависящее от случайных причин.

Различают два вида случайных величин: дискретные и непрерывные.

Определение : Случайная величина Х называется дискретной (прерывной), если множество ее значений конечное или бесконечное, но счетное.

Другими словами, возможные значения дискретной случайной величину можно перенумеровать.

Описать случайную величину можно с помощью ее закона распределения.

Определение : Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями.

Закон распределения дискретной случайной величины Х может быть задан в виде таблицы, в первой строке которой указаны в порядке возрастания все возможные значения случайной величины, а во второй строке соответствующие вероятности этих значений, т. е.

где р1+ р2+…+ рn=1

Такая таблица называется рядом распределения дискретной случайной величины.

Если множество возможных значений случайной величины бесконечно, то ряд р1+ р2+…+ рn+… сходится и его сумма равна 1.

Закон распределения дискретной случайной величины Х можно изобразить графически, для чего в прямоугольной системе координат строят ломаную, соединяющую последовательно точки с координатами (xi;pi), i=1,2,…n. Полученную линию называют многоугольником распределения (рис.1).

Органическая хиимя" href="/text/category/organicheskaya_hiimya/" rel="bookmark">органической химии соответственно равны 0,7 и 0,8. Составить закон распределения случайной величины Х - числа экзаменов, которые сдаст студент.

Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений:x1=0, x2=1, х3=2.

Найдем вероятность этих значений.Обозначим события:

https://pandia.ru/text/78/455/images/image004_81.jpg" width="259" height="66 src=">


Итак, закон распределения случайной величины Х задается таблицей:

Контроль:0,6+0,38+0,56=1.

§ 2. Функция распределения

Полное описание случайной величины дает также функция распределения.

Определение: Функцией распределения дискретной случайной величины Х называется функция F(x), определяющая для каждого значения х вероятность того, что случайная величина Х примет значение, меньше х:

F(x)=Р(Х<х)

Геометрически функция распределения интерпретируется как вероятность того, что случайная величина Х примет значение, которое изображается на числовой прямой точкой, лежащей левее точки х.

1)0≤ F(x) ≤1;

2) F(x)- неубывающая функция на (-∞;+∞);

3) F(x)- непрерывна слева в точках х= xi (i=1,2,…n) и непрерывна во всех остальных точках;

4) F(-∞)=Р (Х<-∞)=0 как вероятность невозможного события Х<-∞,

F(+∞)=Р(Х<+∞)=1 как вероятность достоверного события Х<-∞.

Если закон распределения дискретной случайной величины Х задан в виде таблицы:

то функция распределения F(x) определяется формулой:

https://pandia.ru/text/78/455/images/image007_76.gif" height="110">

0 при х≤ x1,

р1 при x1< х≤ x2,

F(x)= р1 + р2 при x2< х≤ х3

1 при х> хn.

Её график изображен на рис.2:

§ 3. Числовые характеристики дискретной случайной величины.

К числу важных числовых характеристик относится математическое ожидание.

Определение : Математическим ожиданием М(Х) дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:

М(Х)= ∑ xiрi= x1р1 + x2р2+…+ xnрn

Математическое ожидание служит характеристикой среднего значения случайной величины.

Свойства математического ожидания:

1)M(C)=C, где С-постоянная величина;

2)М(С Х)=С М(Х),

3)М(Х±Y)=М(Х) ±M(Y);

4)M(X Y)=M(X) M(Y), где X, Y - независимые случайные величины;

5)M(X±C)=M(X)±C, где С-постоянная величина;

Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия .

Определение : Дисперсией D ( X ) случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Свойства дисперсии:

1)D(C)=0, где С-постоянная величина;

2)D(X)>0, где Х - случайная величина;

3)D(C X)=C2 D(X), где С-постоянная величина;

4)D(X+Y)=D(X)+D(Y), где X, Y - независимые случайные величины;

Для вычисления дисперсии часто бывает удобно пользоваться формулой:

D(X)=M(X2)-(M(X))2,

где М(Х)=∑ xi2рi= x12р1 + x22р2+…+ xn2рn

Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).

Определение: Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:

Задача №2. Дискретная случайная величина Х задана законом распределения:

Найти Р2, функцию распределения F(x) и построить ее график, а также M(X),D(X), σ(Х).

Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то

Р2=1- (0,1+0,3+0,2+0,3)=0,1

Найдем функцию распределения F(х)=P(X

Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Если х≤-1, то F(х)=0, т. к. на (-∞;х) нет ни одного значения данной случайной величины;

Если -1<х≤0, то F(х)=Р(Х=-1)=0,1, т. к. в промежуток (-∞;х) попадает только одно значение x1=-1;

Если 0<х≤1, то F(х)=Р(Х=-1)+ Р(Х=0)=0,1+0,1=0,2, т. к. в промежуток

(-∞;х) попадают два значения x1=-1 и x2=0;

Если 1<х≤2, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)= 0,1+0,1+0,3=0,5, т. к. в промежуток (-∞;х) попадают три значения x1=-1, x2=0 и x3=1;

Если 2<х≤3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)= 0,1+0,1+0,3+0,2=0,7, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1 и х4=2;

Если х>3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)+Р(Х=3)= 0,1+0,1+0,3+0,2+0,3=1, т. к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1,х4=2 и х5=3.

https://pandia.ru/text/78/455/images/image006_89.gif" width="14 height=2" height="2"> 0 при х≤-1,

0,1 при -1<х≤0,

0,2 при 0<х≤1,

F(x)= 0,5 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

Изобразим функцию F(x)графически (рис.3):

https://pandia.ru/text/78/455/images/image014_24.jpg" width="158 height=29" height="29">≈1,2845.

§ 4. Биномиальный закон распределения

дискретной случайной величины, закон Пуассона.

Определение: Биномиальным называется закон распределения дискретной случайной величины Х - числа появлений события А в n независимых повторных испытаниях, в каждом из которых события А может наступить с вероятностью p или не наступить с вероятностью q=1-p. Тогда Р(Х=m)-вероятность появления события А ровно m раз в n испытаниях вычисляется по формуле Бернулли:

Р(Х=m)=Сmnpmqn-m

Математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной по бинарному закону, находят, соответственно, по формулам:

https://pandia.ru/text/78/455/images/image016_31.gif" width="26"> Вероятность события А - «выпадение пятерки» в каждом испытании одна и та же и равна 1/6, т. е. Р(А)=р=1/6, тогда Р(А)=1-p=q=5/6, где

- «выпадения не пятерки».

Случайная величина Х может принимать значения: 0;1;2;3.

Вероятность каждого из возможных значений Х найдем по формуле Бернулли:

Р(Х=0)=Р3(0)=С03р0q3=1 (1/6)0 (5/6)3=125/216;

Р(Х=1)=Р3(1)=С13р1q2=3 (1/6)1 (5/6)2=75/216;

Р(Х=2)=Р3(2)=С23р2q =3 (1/6)2 (5/6)1=15/216;

Р(Х=3)=Р3(3)=С33р3q0=1 (1/6)3 (5/6)0=1/216.

Т. о. закон распределения случайной величины Х имеет вид:

Контроль: 125/216+75/216+15/216+1/216=1.

Найдем числовые характеристики случайной величины Х:

M(X)=np=3 (1/6)=1/2,

D(X)=npq=3 (1/6) (5/6)=5/12,

Задача№4. Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной равна 0,002. Найти вероятность того, что среди 1000 отобранных деталей окажется:

а) 5 бракованных;

б) хотя бы одна бракованная.

Решение: Число n=1000 велико, вероятность изготовления бракованной детали р=0,002 мала, и рассматриваемые события (деталь окажется бракованной) независимы, поэтому имеет место формула Пуассона:

Рn(m)= e - λ λm

Найдем λ=np=1000 0,002=2.

а)Найдем вероятность того, что будет 5 бракованных деталей (m=5):

Р1000(5)= e -2 25 = 32 0,13534 = 0,0361

б)Найдем вероятность того, что будет хотя бы одна бракованная деталь.

Событие А -«хотя бы одна из отобранных деталей бракованная» является противоположным событию -«все отобранные детали не бракованные».Следовательно, Р(А)=1-Р(). Отсюда искомая вероятность равна: Р(А)=1-Р1000(0)=1- e -2 20 = 1- e-2=1-0,13534≈0,865.

Задачи для самостоятельной работы.

1.1

1.2. Дисперсная случайная величина Х задана законом распределения:

Найти р4, функцию распределения F(X) и построить ее график, а также M(X),D(X), σ(Х).

1.3. В коробке 9 фломастеров, из которых 2 фломастера уже не пишут. Наудачу берут 3 фломастера. Случайная величина Х - число пишущих фломастеров среди взятых. Составить закон распределения случайной величины.

1.4. На стеллаже библиотеки в случайном порядке расставлено 6 учебников, причем 4 из них в переплете. Библиотекарь берет наудачу 4 учебника. Случайная величина Х-число учебников в переплете среди взятых. Составить закон распределения случайной величины.

1.5. В билете две задачи. Вероятность правильного решения первой задачи равна 0,9, второй-0,7. Случайная величина Х- число правильно решенных задач в билете. Составить закон распределения, вычислить математическое ожидание и дисперсию этой случайной величины, а также найти функцию распределения F(x) и построить ее график.

1.6. Три стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,5, для второго-0,8, для третьего -0,7. Случайная величина Х - число попаданий в мишень, если стрелки делают по одному выстрелу. Найти закон распределения, M(X),D(X).

1.7. Баскетболист бросает мяч в корзину с вероятностью попадания при каждом броске 0,8. За каждое попадание он получает 10 очков, а в случае промаха очки ему не начисляют. Составить закон распределения случайной величины Х-числа очков, полученных баскетболистом за 3 броска. Найти M(X),D(X), а также вероятность того, что он получит более 10 очков.

1.8. На карточках написаны буквы, всего 5 гласных и 3 согласных. Наугад выбирают 3 карточки, причем каждый раз взятую карточку возвращают назад. Случайная величина Х-число гласных букв среди взятых. Составить закон распределения и найти M(X),D(X),σ(Х).

1.9. В среднем по 60% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Составить закон распределения случайной величины Х - числа договоров, по которым была выплачена страховая сумма среди наудачу отобранных четырех договоров. Найти числовые характеристики этой величины.

1.10. Радиостанция через определенные промежутки времени посылает позывные сигналы (не более четырех) до установления двусторонней связи. Вероятность получения ответа на позывной сигнал равна 0,3. Случайная величина Х-число посланных позывных сигналов. Составить закон распределения и найти F(x).

1.11. Имеется 3 ключа, из которых только один подходит к замку. Составить закон распределения случайной величины Х-числа попыток открывания замка, если испробованный ключ в последующих попытках не участвует. Найти M(X),D(X).

1.12. Производятся последовательные независимые испытания трех приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Вероятность выдержать испытание для каждого прибора равна 0,9. Составить закон распределения случайной величины Х-числа испытанных приборов.

1.13 .Дискретная случайная величина Х имеет три возможные значения: х1=1, х2,х3, причем х1<х2<х3. Вероятность того, что Х примет значения х1 и х2, соответственно равны 0,3 и 0,2. Известно, что М(Х)=2,2, D(X)=0,76. Составить закон распределения случайной величины.

1.14. Блок электронного устройства содержит 100 одинаковых элементов. Вероятность отказа каждого элемента в течении времени Т равна 0,002. Элементы работают независимо. Найти вероятность того, что за время Т откажет не более двух элементов.

1.15. Учебник издан тиражом 50000 экземпляров. Вероятность того, что учебник сброшюрован неправильно, равна 0,0002. Найти вероятность того, что тираж содержит:

а) четыре бракованные книги,

б) менее двух бракованных книг.

1 .16. Число вызовов, поступающих на АТС каждую минуту, распределено по закону Пуассона с параметром λ=1,5. Найдите вероятность того, что за минуту поступит:

а) два вызова;

б)хотя бы один вызов.

1.17.

Найти M(Z),D(Z), если Z=3X+Y.

1.18. Даны законы распределения двух независимых случайных величин:

Найти M(Z),D(Z), если Z=X+2Y.

Ответы:

https://pandia.ru/text/78/455/images/image007_76.gif" height="110">1.1. р3=0,4; 0 при х≤-2,

0,3 при -2<х≤0,

F(x)= 0,5 при 0<х≤2,

0,9 при 2<х≤5,

1 при х>5

1.2. р4=0,1; 0 при х≤-1,

0,3 при -1<х≤0,

0,4 при 0<х≤1,

F(x)= 0,6 при 1<х≤2,

0,7 при 2<х≤3,

1 при х>3

M(Х)=1; D(Х)=2,6; σ(Х) ≈1,612.

https://pandia.ru/text/78/455/images/image025_24.gif" width="2 height=98" height="98"> 0 при х≤0,

0,03 при 0<х≤1,

F(x)= 0,37 при 1<х≤2,

1 при х>2

M(Х)=2; D(Х)=0,62

M(Х)=2,4; D(Х)=0,48, P(X>10)=0,896

1. 8 .

M(Х)=15/8; D(Х)=45/64; σ(Х) ≈

M(Х)=2,4; D(Х)=0,96

https://pandia.ru/text/78/455/images/image008_71.gif" width="14">1.11.

M(Х)=2; D(Х)=2/3

1.14. 1,22 e-0,2≈0,999

1.15. а)0,0189; б) 0,00049

1.16. а)0,0702; б)0,77687

1.17. 3,8; 14,2

1.18. 11,2; 4.

Глава 2. Непрерывная случайная величина

Определение: Непрерывной называют величину, все возможные значения которой полностью заполняют конечный или бесконечный промежуток числовой оси.

Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Непрерывную случайную величину можно задавать с помощью функции распределения.

Определение: Функцией распределения непрерывной случайной величины Х называется функция F(х), определяющая для каждого значения хhttps://pandia.ru/text/78/455/images/image028_11.jpg" width="14" height="13">R

Функцию распределения иногда называют интегральной функцией распределения.

Свойства функции распределения:

1)1≤ F(x) ≤1

2)У непрерывной случайной величины функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

3) Вероятность попадания случайной величины Х в один из промежутков (а;b), [а;b), [а;b], равна разности значений функции F(х) в точках а и b, т.е. Р(а<Х

4)Вероятность того, что непрерывная случайная величина Х примет одно отдельное значение равна 0.

5) F(-∞)=0, F(+∞)=1

Задание непрерывной случайной величины с помощью функции распределения не является единственным. Введем понятие плотности распределения вероятностей (плотность распределения).

Определение : Плотностью распределения вероятностей f ( x ) непрерывной случайной величины Х называется производная от ее функции распределения, т. е.:

Плотность распределения вероятностей иногда называют дифференциальной функцией распределения или дифференциальным законом распределения.

Графикплотности распределения вероятностей f(x) называется кривой распределения вероятностей .

Свойства плотности распределения вероятностей:

1)f(x) ≥0,при хhttps://pandia.ru/text/78/455/images/image029_10.jpg" width="285" height="141">.gif" width="14" height="62 src="> 0 при х≤2,

f(x)= с(х-2) при 2<х≤6,

0 при х>6.

Найти: а) значение с; б) функцию распределения F(х) и построить ее график; в) Р(3≤х<5)

Решение:

+

а) Значение с найдем из условия нормировки: ∫ f(x)dx=1.

Следовательно, -∞

https://pandia.ru/text/78/455/images/image032_23.gif" height="38 src="> -∞ 2 2 х

если 2<х≤6, то F(x)= ∫ 0dx+∫ 1/8(х-2)dx=1/8(х2/2-2х) = 1/8(х2/2-2х - (4/2-4))=

1/8(х2/2-2х+2)=1/16(х-2)2;

Gif" width="14" height="62"> 0 при х≤2,

F(х)= (х-2)2/16 при 2<х≤6,

1 при х>6.

График функции F(х) изображен на рис.3

https://pandia.ru/text/78/455/images/image034_23.gif" width="14" height="62 src="> 0 при х≤0,

F(х)= (3 arctg х)/π при 0<х≤√3,

1 при х>√3.

Найти дифференциальную функцию распределения f(х)

Решение: Т. к.f(х)= F’(x), то

https://pandia.ru/text/78/455/images/image011_36.jpg" width="118" height="24">

Все свойства математического ожидания и дисперсии, рассмотренные ранее для дисперсных случайных величин, справедливы и для непрерывных.

Задача №3. Случайная величина Х задана дифференциальной функцией f(x):

https://pandia.ru/text/78/455/images/image036_19.gif" height="38"> -∞ 2

X3/9 + х2/6 = 8/9-0+9/6-4/6=31/18,

https://pandia.ru/text/78/455/images/image032_23.gif" height="38"> +∞

D(X)= ∫ х2 f(x)dx-(М(х))2=∫ х2 х/3 dx+∫1/3х2 dx=(31/18)2=х4/12 +х3/9 -

- (31/18)2=16/12-0+27/9-8/9-(31/18)2=31/9- (31/18)2==31/9(1-31/36)=155/324,

https://pandia.ru/text/78/455/images/image032_23.gif" height="38">

P(1<х<5)= ∫ f(x)dx=∫ х/3 dx+∫ 1/3 dx+∫ 0 dx= х2/6 +1/3х =

4/6-1/6+1-2/3=5/6.

Задачи для самостоятельного решения.

2.1. Непрерывная случайная величина Х задана функцией распределения:

0 при х≤0,

F(х)= https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤ π/6,

F(х)= - cos 3x при π/6<х≤ π/3,

1 при х> π/3.

Найти дифференциальную функцию распределения f (x), а также

Р(2π /9<Х< π /2).

2.3.

0 при х≤2,

f(х)= с х при 2<х≤4,

0 при х>4.

2.4. Непрерывная случайная величина Х задана плотностью распределения:

0 при х≤0,

f(х)= с √х при 0<х≤1,

0 при х>1.

Найти: а) число с; б) М(Х), D(X).

2.5.

https://pandia.ru/text/78/455/images/image041_3.jpg" width="36" height="39"> при х,

0 при х .

Найти: а) F(х) и построить ее график; б) M(X),D(X), σ(Х); в) вероятность того, что в четырех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее интервалу (1;4).

2.6. Задана плотность распределения вероятностей непрерывной случайной величины Х:

f(х)= 2(х-2) при х,

0 при х .

Найти: а) F(х) и построить ее график; б) M(X),D(X), σ (Х); в) вероятность того, что в трех независимых испытаниях величина Х примет ровно 2 раза значение, принадлежащее отрезку .

2.7. Функция f(х) задана в виде:

https://pandia.ru/text/78/455/images/image045_4.jpg" width="43" height="38 src=">.jpg" width="16" height="15">[-√3/2 ; √3/2].

2.8. Функция f(x) задана в виде:

https://pandia.ru/text/78/455/images/image046_5.jpg" width="45" height="36 src="> .jpg" width="16" height="15">[- π /4 ; π /4].

Найти: а) значение постоянной с, при которой функция будет плотностью вероятности некоторой случайной величины Х; б) функцию распределения F(x).

2.9. Случайная величина Х, сосредоточенная на интервале (3;7), задана функцией распределения F(х)= . Найти вероятность того, что

случайная величина Х примет значение: а) меньше 5, б) не меньше 7.

2.10. Случайная величина Х, сосредоточенная на интервале (-1;4),

задана функцией распределения F(х)= . Найти вероятность того, что

случайная величина Х примет значение: а) меньше 2, б) не меньше 4.

2.11.

https://pandia.ru/text/78/455/images/image049_6.jpg" width="43" height="44 src="> .jpg" width="16" height="15">.

Найти: а) число с; б) М(Х); в) вероятность Р(Х> М(Х)).

2.12. Случайная величина задана дифференциальной функцией распределения:

https://pandia.ru/text/78/455/images/image050_3.jpg" width="60" height="38 src=">.jpg" width="16 height=15" height="15">.

Найти: а) М(Х); б) вероятность Р(Х≤М(Х))

2.13. Распределение Ремя задается плотностью вероятности:

https://pandia.ru/text/78/455/images/image052_5.jpg" width="46" height="37"> при х ≥0.

Доказать, что f(x) действительно является плотностью распределения вероятностей.

2.14. Задана плотность распределения вероятностей непрерывной случайной величины Х:

https://pandia.ru/text/78/455/images/image054_3.jpg" width="174" height="136 src=">(рис.4) (рис.5)

2.16. Случайная величина Х распределена по закону «прямоугольного треугольника» в интервале (0;4) (рис.5). Найти аналитическое выражение для плотности вероятности f(x) на всей числовой оси.

Ответы

0 при х≤0,

f(х)= https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤ π/6,

F(х)= 3sin 3x при π/6<х≤ π/3,

0 при х> π/3. Непрерывная случайная величина Х имеет равномерный закон распределения на некотором интервале (а;b), которому принадлежат все возможные значения Х, если плотность распределения вероятностей f(x) постоянная на этом интервале и равна 0 вне его, т. е.

0 при х≤а,

f(х)= при a<х

0 при х≥b.

График функции f(x) изображен на рис. 1

https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86"> 0 при х≤а,

F(х)= https://pandia.ru/text/78/455/images/image077_3.jpg" width="30" height="37">, D(X)=, σ(Х)=.

Задача№1. Случайная величина Х равномерно распределена на отрезке . Найти:

а) плотность распределения вероятностей f(x) и построить ее график;

б) функцию распределения F(x) и построить ее график;

в) M(X),D(X), σ(Х).

Решение: Воспользовавшись формулами, рассмотренными выше, при а=3, b=7, находим:

https://pandia.ru/text/78/455/images/image081_2.jpg" width="22" height="39"> при 3≤х≤7,

0 при х>7

Построим ее график (рис.3):

https://pandia.ru/text/78/455/images/image038_17.gif" width="14" height="86 src="> 0 при х≤3,

F(х)= https://pandia.ru/text/78/455/images/image084_3.jpg" width="203" height="119 src=">рис.4

D(X) = ==https://pandia.ru/text/78/455/images/image089_1.jpg" width="37" height="43">==https://pandia.ru/text/78/455/images/image092_10.gif" width="14" height="49 src="> 0 при х<0,

f(х)= λе-λх при х≥0.

Функция распределения случайной величины Х, распределенной по показательному закону, задается формулой:

https://pandia.ru/text/78/455/images/image094_4.jpg" width="191" height="126 src=">рис..jpg" width="22" height="30"> , D(X)=, σ (Х)=

Таким образом, математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Вероятность попадания Х в интервал (a;b) вычисляется по формуле:

Р(a<Х

Задача №2. Среднее время безотказной работы прибора равно 100 ч. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:

а) плотность распределения вероятностей;

б) функцию распределения;

в) вероятность того, что время безотказной работы прибора превысит 120 ч.

Решение: По условию математическое распределение M(X)=https://pandia.ru/text/78/455/images/image098_10.gif" height="43 src="> 0 при х<0,

а) f(х)= 0,01е -0,01х при х≥0.

б) F(x)= 0 при х<0,

1- е -0,01х при х≥0.

в) Искомую вероятность найдем, используя функцию распределения:

Р(X>120)=1-F(120)=1-(1- е -1,2)= е -1,2≈0,3.

§ 3.Нормальный закон распределения

Определение: Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса), если ее плотность распределения имеет вид:

,

где m=M(X), σ2=D(X), σ>0.

Кривую нормального закона распределения называют нормальной или гауссовой кривой (рис.7)

Нормальная кривая симметрична относительно прямой х=m, имеет максимум в т. х=а, равный .

Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф (х) по формуле:

,

где - функция Лапласа.

Замечание: Функция Ф(х) является нечетной (Ф(-х)=-Ф(х)), кроме того, при х>5 можно считать Ф(х) ≈1/2.

График функции распределения F(x) изображен на рис. 8

https://pandia.ru/text/78/455/images/image106_4.jpg" width="218" height="33">

Вероятность того, что абсолютная величина отклонения меньше положительного числа δ вычисляется по формуле:

В частности, при m=0 справедливо равенство:

«Правило трех сигм»

Если случайная величина Х имеет нормальный закон распределения с параметрами m и σ, то практически достоверно, что ее значение заключены в интервале (a-3σ; a+3σ), т. к.

https://pandia.ru/text/78/455/images/image110_2.jpg" width="157" height="57 src=">а)

б) Воспользуемся формулой:

https://pandia.ru/text/78/455/images/image112_2.jpg" width="369" height="38 src=">

По таблице значений функции Ф(х) находим Ф(1,5)=0,4332, Ф(1)=0,3413.

Итак, искомая вероятность:

P(28

Задачи для самостоятельной работы

3.1. Случайная величина Х равномерно распределена в интервале (-3;5). Найдите:

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(4<х<6).

3.2. Случайная величина Х равномерно распределена на отрезке . Найдите:

а) плотность распределения f(x);

б)функции распределения F(x);

в)числовые характеристики;

г)вероятность Р(3≤х≤6).

3.3. На шоссе установлен автоматический светофор, в котором 2 минуты для транспорта горит зеленый свет, 3 секунды желтый и 30 секунд красный и т. д. Машина проезжает по шоссе в случайный момент времени. Найти вероятность того, что машина проедет мимо светофора, не останавливаясь.

3.4. Поезда метрополитена идут регулярно с интервалом 2 минуты. Пассажир выходит на платформу в случайный момент времени. Какова вероятность того, что ждать поезд пассажиру придется больше 50 секунд. Найти математическое ожидание случайной величины Х - время ожидания поезда.

3.5. Найти дисперсию и среднее квадратическое отклонение показательного распределения, заданного функцией распределения:

F(x)= 0 при х<0,

1-е-8х при х≥0.

3.6. Непрерывная случайная величина Х задана плотностью распределения вероятностей:

f(x)= 0 при х<0,

0,7 е-0,7х при х≥0.

а) Назовите закон распределения рассматриваемой случайной величины.

б) Найдите функцию распределения F(X) и числовые характеристики случайной величины Х.

3.7. Случайная величина Х распределена по показательному закону, заданному плотностью распределения вероятностей:

f(x)= 0 при х<0,

0,4 е-0,4 х при х≥0.

Найти вероятность того, что в результате испытания Х примет значение из интервала (2,5;5).

3.8. Непрерывная случайная величина Х распределена по показательному закону, заданному функцией распределения:

F(x)= 0 при х<0,

1-е-0,6х при х≥0

Найти вероятность того, что в результате испытания Х примет значение из отрезка .

3.9. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины соответственно равны 8 и 2. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из интервала (10;14).

3.10. Случайная величина Х распределена нормально с математическим ожиданием 3,5 и дисперсией 0,04. Найдите:

а) плотность распределения f(x);

б) вероятность того, что в результате испытания Х примет значение из отрезка .

3.11. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1. Какое из событий: |Х|≤0,6 или |Х|≥0,6 имеет большую вероятность?

3.12. Случайная величина Х распределена нормально с M(X)=0 и D(X)=1.Из какого интервала (-0,5;-0,1) или (1;2) при одном испытании она примет значение с большей вероятностью?

3.13. Текущая цена за одну акцию может быть смоделирована с помощью нормального закона распределения с M(X)=10ден. ед. и σ (Х)=0,3 ден. ед. Найти:

а) вероятность того, что текущая цена акции будет от 9,8 ден. ед. до 10,4 ден. ед.;

б)с помощью «правила трех сигм» найти границы, в которых будет находится текущая цена акции.

3.14. Производится взвешивание вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отношением σ=5г. Найти вероятность того, что в четырех независимых опытах ошибка при трех взвешиваниях не произойдет по абсолютной величине 3г.

3.15. Случайная величина Х распределена нормально с M(X)=12,6. Вероятность попадания случайной величины в интервал (11,4;13,8) равна 0,6826. Найдите среднее квадратическое отклонение σ.

3.16. Случайная величина Х распределена нормально с M(X)=12 и D(X)=36.Найти интервал, в который с вероятностью 0,9973 попадет в результате испытания случайная величина Х.

3.17. Деталь, изготовленная автоматом, считается бракованной, если отклонение Х ее контролируемого параметра от номинала превышает по модулю 2 единицы измерения . Предполагается, что случайная величина Х распределена нормально с M(X)=0 и σ(Х)=0,7. Сколько процентов бракованных деталей выдает автомат?

3.18. Параметр Х детали распределен нормально с математическим ожиданием 2, равным номиналу, и средним квадратическим отклонением 0,014. Найти вероятность того, что отклонение Х от номинала по модулю не превысит 1% номинала.

Ответы

https://pandia.ru/text/78/455/images/image116_9.gif" width="14" height="110 src=">

б) 0 при х≤-3,

F(х)= left">

3.10. а)f(x)= ,

б) Р(3,1≤Х≤3,7) ≈0,8185.

3.11. |x|≥0,6.

3.12. (-0,5;-0,1).

3.13. а) Р(9,8≤Х≤10,4) ≈0,6562.

3.14. 0,111.

3.15. σ=1,2.

3.16. (-6;30).

3.17. 0,4%.




Top